Criteria for Similarity of Triangles (Theorem and Proof) | Examples (2024)

In Mathematics, a triangle is a closed two-dimensional figure or polygon with the least number of sides. A triangle has three sides and three angles. The most important property of a triangle is the sum of the interior angles of a triangle is equal to 180°. In this article, let us discuss the important criteria for the similarity of triangles with their theorem and proof and many solved examples.

Conditions for Similarity of Two Triangles

Two triangles are said to be similar triangles,

  • If their corresponding angles are equal.
  • If their corresponding sides are in the same proportion/ratio.

Consider two triangles ABC and DEF.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (1)

The two triangles are said to be similar triangles, if

  1. ∠A = ∠D, ∠B = ∠E, ∠C = ∠F
  2. AB/DE = BC/EF = CA/FD

In this scenario, we can say that the two triangles ABC and DEF are similar.

Important Criteria for Similarity of Triangles

The four important criteria used in determining the similarity of triangles are

  • AAA criterion (Angle-Angle-Angle criterion)
  • AA criterion (Angle-Angle criterion)
  • SSS criterion (Side-Side-Side criterion)
  • SAS Criterion (Side-Angle-Side criterion)

Now, let us discuss all these criteria for the similarity of triangles in detail.

AAA Similarity Criterion for Two Triangles

The Angle-Angle-Angle (AAA) criterion for the similarity of triangles states that “If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar”.

Proof:

Consider two triangles ABC and DEF, such that ∠A = ∠D, ∠B = ∠E and ∠C = ∠F as shown in the figure.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (2)

Now, cut DP= AB and DQ= AC and join PQ. Hence, we can say that a triangle ABC is congruent to the triangle DPQ.

(i.e) ∆ ABC ≅ ∆ DPQ, which gives ∠B = ∠P = ∠E and also, the line PQ is parallel to EF.

Therefore, by using the basic proportionality theorem, we can write

DP/PE = DQ/QF.

(i.e) AB/DE = AC/DF. …(1)

Similarly,

AB/DE = BC/EF …(2)

From (1) and (2), we can write:

AB/DE = BC/EF = AC/DF.

Therefore, the two triangles ABC and DEF are similar.

AA Similarity Criterion for Two Triangles

The Angle-Angle (AA) criterion for similarity of two triangles states that “If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar”.

The AA criterion states that if two angles of a triangle are respectively equal to the two angles of another triangle, we can prove that the third angle will also be equal on both the triangles. This can be done with the help of the angle sum property of a triangle.

SSS Similarity Criterion for Two Triangles

The Side-Side-Side (SSS) criterion for similarity of two triangles states that “If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of ) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar”.

Proof:

Consider the same figure as given above. It is observed that DP/PE = DQ/QF and also in the triangle DEF, the line PQ is parallel to the line EF.

So, ∠P = ∠E and ∠Q = ∠F.

Hence, we can write: DP/DE = DQ/DF= PQ/EF.

The above expression is written as

DP/DE = DQ/DF=BC/EF.

It means that PQ = BC.

Hence, the triangle ABC is congruent to the triangle DPQ.

(i.e) ∆ ABC ≅ ∆ DPQ.

Thus, by using the AAA criterion for similarity of the triangle, we can say that

∠A = ∠D, ∠B = ∠E and ∠C = ∠F.

Also, read:
  • Angle Sum Property of Triangles
  • Corresponding Angles
  • Alternate Angles
  • Congruence of Triangles

SAS Similarity Criterion for Two Triangles

The Side-Angle-Side (SAS) criterion for similarity of two triangles states that “If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar”.

Proof:

This theorem can be proved by taking two triangles such as ABC and DEF (Refer to the same figure as given above).

By using the basic proportionality theorem, we get

AB/DE = AC/DF and ∠A = ∠D

In the triangle DEF, the line PQ is parallel to EF.

So, ∆ ABC ≅ ∆ DPQ.

Hence, we can say ∠A = ∠D, ∠B=∠P and ∠C= ∠Q, which means that the triangle ABC is similar to the triangle DEF.

(i.e) ∆ ABC ~ ∆ DEF.

Examples

Now, let us use the criteria for the similarity of triangles to find the unknown angles and sides of a triangle.

Example 1:

Find ∠P in the following triangles.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (3)

Solution:

From the given triangles, ABC and PQR, we can get

AB/RQ = 3.8/7.6 = ½

BC/QP = 6/12 = ½

CA/PR = (3√3)/6√3 = ½

Therefore,

AB/RQ = BC/QP = CA/PR

Hence, by using the SSS similarity criterion for a triangle, we can write

∆ ABC ~ ∆ RQP (i.e) ∆ABC is similar to ∆RQP.

By using corresponding angles of similar triangles,

∠C = ∠P

∠C = 180°- ∠A – ∠B (Using the angle sum property of triangle).

∠C= 180° – 80° – 60°

∠C= 40°.

Since, ∠C= ∠P, the value of ∠p is 40°.

Example 2:

Show that the triangles POQ and SOR are similar triangles, given that PQ is parallel to RS as shown in the figure.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (4)

Solution:

Given that PQ is parallel to RS. (i.e) PQ || RS.

By using alternate angles property, ∠P = ∠S and ∠Q = ∠R.

Also, by using the vertically opposite angles, ∠POQ = ∠SOR.

Hence, we can conclude that a triangle POQ is similar to the triangle SOR.

(i.e) ∆ POQ ~ ∆ SOR (Using AAA similarity criterion for triangles)

Hence, proved.

Video Lesson on BPT and Similar Triangles

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (5)

Practice Problems

1. From the given figure, if ∆ ABE ≅ ∆ ACD, prove that ∆ ADE ~ ∆ ABC.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (6)

2. In the given figure, QR/QS = QT/PR and ∠1= ∠2. Show that ∆ PQS ~ ∆ TQR.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (7)

3. Determine the height of a tower, if a vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long.

Keep visiting BYJU’S – The Learning App and download the app to learn all Maths-related concepts by exploring more videos.

Criteria for Similarity of Triangles (Theorem and Proof) | Examples (2024)

FAQs

Criteria for Similarity of Triangles (Theorem and Proof) | Examples? ›

If the two sides of a triangle are in the same proportion of the two sides of another triangle, and the angle inscribed by the two sides in both the triangle are equal, then two triangles are said to be similar. Thus, if ∠A = ∠X and AB/XY = AC/XZ then ΔABC ~ΔXYZ.

What is the criteria for similarity of triangles theorem? ›

The Angle-Angle-Angle (AAA) criterion for the similarity of triangles states that “If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar”.

What postulates and theorems can be used to prove triangle similarity? ›

These three theorems, known as Angle-Angle (AA), Side-Angle-Side (SAS), and Side-Side-Side (SSS), are foolproof methods for determining similarity in triangles.

What are 3 rules that prove two triangles are similar? ›

The three triangle similarity theorems to prove triangles similar are: Side-Angle-Side, or SAS. Side-Side-Side, or SSS. Angle-Angle, or AA.

What are the rules to prove triangle similarity? ›

If two pairs of corresponding sides are in proportion, and the included angle of each pair is equal, then the two triangles they form are similar. Any time two sides of a triangle and their included angle are fixed, then all three vertices of that triangle are fixed.

What is the proof of triangle similarity theorem? ›

If a pair of triangles have three proportional corresponding sides, then we can prove that the triangles are similar. The reason is because, if the corresponding side lengths are all proportional, then that will force corresponding interior angle measures to be congruent, which means the triangles will be similar.

What are the 3 triangle similarity conditions? ›

Similar Triangles Theorems

There are three major types of similarity rules, as given below, AA (or AAA) or Angle-Angle Similarity Theorem. SAS or Side-Angle-Side Similarity Theorem. SSS or Side-Side-Side Similarity Theorem.

What are the conditions to prove similar triangles? ›

If the two sides of a triangle are in the same proportion of the two sides of another triangle, and the angle inscribed by the two sides in both the triangle are equal, then two triangles are said to be similar.

What is the right triangle similarity theorem and its proof? ›

If the lengths of the hypotenuse and a leg of a right triangle are proportional to the corresponding parts of another right triangle, then the triangles are similar. (You can prove this by using the Pythagorean Theorem to show that the third pair of sides is also proportional.) In the figure, D F S T = D E S R .

How do you prove triangles similar examples? ›

Two triangles are similar if two angles of one equal two angles of the other (AA=AA). In Figure 4.2. 2, △ABC∼△DEF because ∠A=∠D and ∠B=∠E.

What are the four requirements for similarity? ›

There are four similarity tests for triangles.
  • Angle Angle Angle (AAA) If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar. ...
  • Side Angle Side (SAS) ...
  • Side Side Side (SSS) ...
  • Right-angle Hypotenuse Side (RHS)

What is the formula for the similarity theorem? ›

Angle-Angle (AA) or AAA Similarity Theorem

AA similarity rule is easily applied when we only know the measure of the angles and have no idea about the length of the sides of the triangle. And we can say that by the AA similarity criterion, △ABC and △EGF are similar or △ABC ∼ △EGF. ⇒AB/EG = BC/GF = AC/EF and ∠A = ∠E.

What are the rules of similarity of triangles? ›

If the corresponding sides of the two triangles are proportional the triangles must be similar. If two sides of two triangles are proportional and they have one corresponding angle congruent, the two triangles are said to be similar.

How to determine if triangles are similar? ›

Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion . In other words, similar triangles are the same shape, but not necessarily the same size. The triangles are congruent if, in addition to this, their corresponding sides are of equal length.

What are the conditions for similarity of triangles? ›

Two triangles are similar if they have the same ratio of corresponding sides and equal pair of corresponding angles. If two or more figures have the same shape, but their sizes are different, then such objects are called similar figures.

What is AAS criteria for similarity of triangles? ›

The AAS Similarity Theorem provides a way for us to determine whether two triangles are similar. In order for two triangles to be considered similar by the AAS Similarity Theorem, corresponding angles must be congruent and the lengths of corresponding sides must be proportional.

What is the SSA criteria for similarity of triangles? ›

What is Meant by SSA Congruence Rule? SSA congruence rule states that if two sides and an angle not included between them are respectively equal to two sides and an angle of the other then the two triangles are equal.

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Sen. Ignacio Ratke

Last Updated:

Views: 6016

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Sen. Ignacio Ratke

Birthday: 1999-05-27

Address: Apt. 171 8116 Bailey Via, Roberthaven, GA 58289

Phone: +2585395768220

Job: Lead Liaison

Hobby: Lockpicking, LARPing, Lego building, Lapidary, Macrame, Book restoration, Bodybuilding

Introduction: My name is Sen. Ignacio Ratke, I am a adventurous, zealous, outstanding, agreeable, precious, excited, gifted person who loves writing and wants to share my knowledge and understanding with you.